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Paper & Code:

Motivating Example

Class-dependent label noise (CDN): ∀X : P(Ỹ |Y ∗, X) = P(Ỹ |Y ∗).
Instance-dependent label noise (IDN): ∃X : P(Ỹ |Y ∗, X) 6= P(Ỹ |Y ∗)
Example:
Two groups of instances. Intra-group: CDN; Inter-group: IDN.
Empirical Risk Minimization (ERM) of instances from two groups:

Loss =
∑

i∈Group-1

Lossi +
∑

j∈Group-2

Lossj

Clean instance from Group-1               Noisy instance from Group-1

Clean instance from Group-2               Noisy instance from Group-2

Clean Class-dependent label noise Instance (group)-dependent noise

Intuition: Compare the weights of group 1 with group 2, we find:
Clean: no noise ⇒
equal #instances contribute to clean loss ⇒ equal weights in ERM
CDN: equal noise ⇒
equal #instances contribute to clean loss ⇒ equal weights in ERM
IDN: Group 2: larger noise ⇒
less #instances contribute to clean loss ⇒ smaller weights in ERM

Problems & Solutions (Overview)

One-sentence summary:
We use covariance to compensate for the “imbalances” caused by IDN
such that the challenging IDN can be transformed to a easier CDN one.
Problems:
1. Label noise (X, Ỹ ) → Wrong correlation patterns

2. Expensive human-efforts to reduce label noise
Challenges:
1. Unknown instance-dependent noise rates P(Ỹ |Y ∗, X), while most exist-

ing works [1-5] assume feature independency: P(Ỹ |Y ∗, X) = P(Ỹ |Y ∗)
2. Loss-correction/reweighting [1-3]: Hard to estimate P(Ỹ |Y ∗, X),∀X
3. IDN causes imbalances in different feature group (see Motivation)

Solutions: CAL: IDN
2nd-Order
=====⇒ CDN

1st-Order
=====⇒ Clean

Peer Loss (Use First-Order Statistics)

Definition: `PL(f (xn), ỹn) := `(f (xn), ỹn)− `(f (xn1), ỹn2)
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Lemma: Peer loss [4] is invariant to CDN: NoisyPL = ω · CleanPL

Summary: 1) CDN
Peer Loss
====⇒ Clean; 2) Unknown ω: Noise ↑, weight ω ↓

Insufficiency of First-Order Statistics
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Summary: IDN causes weights imbalances
CDN: Only one unknown constant ω. Equal for all features.
IDN: Multiple unknown constants ωg. Down-weight high-noise features.

Covariance-Assisted Learning (CAL)

Our method: Peer Loss + Covariance (requires constructing D̂ for T ):
`CAL(f (xn), ỹn) = `PL(f (xn), ỹn) − Cov(Noise Trans. T,Model Pred.)
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Summary:

• CAL balances weights of each feature

– High-noise (I, II): improve weights

– Low-noise (III,IV): reduce weights

• IDN
Covariance
=====⇒ CDN

Peer Loss
=====⇒ Clean

Benefits: CAL is a “soft” correction (vs. “hard” label correction)

• Use an average term, less sensitive to estimation of each instance

• Tolerant of inaccurate D̂

Algorithm (Sketch)

1. Construct D̂ (unbiased estimate of D∗ ∼ D∗) with sample sieve [5]

2. Estimate (unbiased) T̂ with D̂ (complexity O(SampleSize))

3. [Train DNN] Implement CAL in SGD (each point O(1) complexity)

Theoretical Guarantee

Theorem:
1) With perfect covariance estimates, 1CAL is robust to IDN (induces the
Bayes optimal classifier).
2) With imperfect covariance estimates, error rate can be upper bounded.

Experiments

Table: Comparison of test accuracies (%) using different methods.

Method
Inst. CIFAR10 Inst. CIFAR100

η = 0.2 η = 0.4 η = 0.6 η = 0.2 η = 0.4 η = 0.6

CE (Standard) 85.45±0.57 76.23±1.54 59.75±1.30 57.79±1.25 41.15±0.83 25.68±1.55
Forward T [2] 87.22±1.60 79.37±2.72 66.56±4.90 58.19±1.37 42.80±1.01 27.91±3.35
T-Revision [3] 90.04±0.46 84.11±2.47 72.18±2.47 58.00±0.36 43.83±8.42 36.07±9.73
Peer Loss [4] 89.12±0.76 83.26±0.42 74.53±1.22 61.16±0.64 47.23±1.23 31.71±2.06
CORES2 [5] 91.14±0.46 83.67±1.29 77.68±2.24 66.47±0.45 58.99±1.49 38.55±3.25

CAL 92.01±0.75 84.96±1.25 79.82±2.56 69.11±0.46 63.17±1.40 43.58±3.30
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